
EXPLICIT FORMULAS FOR HECKE GAUSS SUMS IN
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HATICE BOYLAN AND NILS-PETER SKORUPPA

Abstract. We derive an explicit formula for Hecke Gauss sums of quadratic
number fields. As an immediate consequence we obtain a quadratic reciprocity

law in quadratic number fields which generalizes the classical one given by

Hecke. The proofs use, apart from the well-known formulas for ordinary Gauss
sums, only elementary algebraic manipulations.

1. Introduction and statement of results

Gauss’s fourth proof of the quadratic reciprocity law involved the calculation of
quadratic Gauss sums

(1) τa(b) =
a−1∑
t=0

e2πibt2/a.

For relatively prime a > 0 and b, we know [Gau11]

(2) τa(b) =


(
b
a

)√
a if a ≡ 1 mod 4(

b
a

)
i
√
a if a ≡ 3 mod 4(

b
2a

)
e2πib/8

√
2a if a = 2n, n ≥ 2

(see below for the definition of the generalized Legendre symbol
(
a
b

)
). Using the

easily proved identities τa(b) =
(
b
a

)
τa(1) and

(3) τaa′(b) = τa(a′b)τa′(ab)

for pairwise coprime integers b, a, a′ with a, a′ > 0, the quadratic reciprocity law
becomes an immediate consequence. Indeed, for different odd prime numbers p and
q, we write

τpq(1) = τp(q)τq(p) =
(
p
q

)(
q
p

)
τp(1)τq(1).

Then inserting the values (2) for τa(1), we obtain the quadratic reciprocity law.
The Gauss sums (1) appeared in Dirichlet’s work on class number formulas for

quadratic number fields, and in the related proof of the theorem on primes in
arithmetic progressions, in which he introduced the L-series that bear his name.
Gauss sums show up in the functional equation of these L-series. Ishii [Ish98]
showed that the facts needed for Gauss’s fourth proof of the reciprocity law can all
be read off from the functional equation of the L-series of the biquadratic number
field Q(

√
p,
√
q).

Dirichlet found proofs for Gauss’s result (2) based on the Poisson summation
formula [Dir35], [Dir40]. Cauchy gave another proof using theta functions [Cau40].
Hecke generalized Cauchy’s method to arbitrary algebraic number fields by intro-
ducing Hecke Gauss sums, in which the modulus a in (1) is replaced by an ideal a
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in the number field. He then used theta functions to prove a reciprocity formula for
these Gauss sums and used these results for showing the existence of quadratic class
fields and for proving a quadratic reciprocity law in general number fields. Hecke’s
results can be found in [Hec70, 195-238] and the expositions given by Hasse [Has65]
and (in a different language) by Neukirch [Neu99, 470-493]. However, Hecke did
not obtain explicit formulas for his Gauss sums like the ones in (2). It is remark-
able that, to the authors’ knowledge, no such formulas are known for number fields
different from Q.

Before introducing Gauss sums of arbitrary number fields, Hecke studied first
of all such sums for quadratic number fields [Hec83, Nr. 13]. Namely, if K is a
quadratic number field, say K = Q(

√
D), where D is the discriminant of K, Hecke

considered the sums
G(ω) :=

∑
µ mod a

e2πiTr(µ2ω/
√
D),

where ω ∈ K∗ and a is the denominator of ω (see Section 2). Here, for α in K, we
use Tr(α) = α+ α′, where α′ is the conjugate of α. We shall also use N(α) = αα′.

The main purpose of this article is to derive an explicit formula for these sums.
Namely, we shall prove:

Theorem. Let ω be a nonzero element of K = Q(
√
D), and let M be the smallest

positive rational integer such that Mω is integral. Then

(4) G(ω)/
√

N
(
a gcd(2, a)

)
=

1√
u

∑
∆1

(
∆1
A

) ( 4N(β)/∆1
N/|∆1|

) √
sgn(∆1).

Here N = M/2 if D, M and Tr(Mω/
√
D) are even, and N = M otherwise. Fur-

thermore, β = Nω. The sum is over all integers ∆1 such that |∆1| = gcd(N, 4N(β))
and such that ∆1 and 4N(β)/∆1 are squares modulo 4. Moreover, A denotes any
integer relatively prime to N such that A = Tr(βµ2/

√
D) for some integer µ in K.

Finally, u = 2 if there are two terms in the sum and u=1 otherwise.

We explain some notations and implicit statements used in the theorem. By
√
x,

for a real number x 6= 0, we mean always the square root which is positive or has
positive imaginary part. For integers a > 0 and b, we use

(
b
a

)
for the generalized

Legendre symbol, i.e. the symbol which is multiplicative in a and in b, which equals
the usual Legendre symbol if a is an odd prime, and which, for a = 2, equals 1, −1
or 0 accordingly as b ≡ ±1 mod 8, b ≡ ±3 mod 8 or b is even, respectively. It is not
hard to show that Tr(βµ2/

√
D) is an integral quadratic form on the ring of integers

of K, whose discriminant equals 4N(β) and whose content is relatively prime to N
(see Lemma 1 in Section 2). In particular, this form represents indeed integers A
which are relatively prime to N as implicitly claimed in the theorem.

Note that the sum in formula (4) contains at most 2 terms, and that B(ω) :=

G(ω)/
√

N
(
a gcd(2, a)

)
is an eighth root of unity if G(ω) 6= 0. In fact, the sum

contains two terms, and then B(ω) is a primitive eighth root of unity, if D or
a := Tr(Mω/

√
D) is odd, if 4|M and the 2-part of M divides n := N(Mω) (see

Lemma 3). The sum contains no terms, and hence G(ω) = 0, if D or a is odd, and
M = 2 or M is exact divisor of 2n. Otherwise the sum contains exactly one term
and B(ω) is a fourth root of unity.

For those ω, which can be written as quotient β/α with relatively prime integers
α and β in K1, the integer α being odd, the formula (4) can be rewritten in

1If the class number of K is 1, then every number in K can be written in the form β/α with
relatively prime integers β and α. Note that the reverse statement holds also true. Indeed, if a is

an integral ideal, say, a = (α0, β0), and if we can write β0/α0 = β/α with relatively prime integers

α and β, then β0 = βa and α0 = αa, and hence a is a principal ideal.
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a different and surprisingly simple way. For explaining this we need some more
notation. Recall from [Hec70, §54] that, for relatively prime integers β and odd α

in K, one uses
(
β
α

)
for the product of the symbols

(
β
p

)
, where p runs through all

(not necessarily different) prime ideals dividing α, and where
(
β
p

)
equals +1 or −1

accordingly as β is a square modulo p or not.
For an odd integer α in K, we denote by εα that integer in {±1} such that

εαN(α) ≡ 1 mod 4. If the discriminant D is exactly divisible by 4 then every odd
integer α in K has norm congruent to 1 modulo 4 and consequently εα = +1, and
vice versa. If D is not exactly divisible by 4, then there exist a unique Dirichlet
character χ− modulo 4 on the ring of integers in K such that, for every integer α in
K whose norm is congruent to −1 modulo 4, one has χ−(α) ≡ Tr

(
αµ2/

√
D
)

mod 4
for all integers µ such that the right hand side is odd. See Lemma 5 in Section 2 for a
more detailed explanation and the proof of the statements made in this paragraph.
For any D, we use χ+ for the trivial Dirichlet character modulo 1 on the ring of
integers in K.

Finally, for nonzero real numbers a and b we set (a, b)∞ equal to −1 if a and b are
both negative and equal to +1 otherwise, i.e. (a, b)∞ denotes the Hilbert symbol
for the field of real numbers. For odd α, the formula (4) can then be restated as
follows:

Supplement to the theorem. For relatively prime integers α and β of Q
(√
D
)
,

the integer α being odd, one has

(5) G(β/α) =
(
β
α

)
χεα(α)

(
A,N(α)

)
∞

(
εα,−N(α)

)
∞

√
εαN(α).

Here A denotes any nonzero number represented by the quadratic form Q(µ) :=
Tr(αµ2/

√
D).

Note that the discriminant of Q(µ) equals 4N(α). Hence
(
A,N(α)

)
∞ equals −1

if and only if Q is negative definite. In particular, this symbol does not depend on
the choice of A. For the (not obvious) deduction of (5) from (4) see Section 2.

Mimicking the proof of quadratic reciprocity sketched in the beginning the for-
mula of the supplement to the theorem implies a quadratic reciprocity law for qua-
dratic number fields which generalizes the one given by Hecke [Hec70, Satz 165].
Namely, it is easily proved [Hec70, Eq. (169)] that

(6) G(1/αβ) = G(β/α)G(α/β).

Inserting (5) into the last identity, we obtain the following reciprocity law (see
section 2 for the details of the proof).

Corollary (Quadratic Reciprocity). For any pair of relatively prime odd integers α
and β in a quadratic number field K, one has

(7)
(
α
β

)(
β
α

)
= χεα(β)χεβ (α) (εα, εβ)∞

∏
σ

(
σ(α), σ(β)

)
∞.

Here σ runs through the real embeddings of K, and the product is taken as 1 if K
is complex.

Note that (7) generalizes the quadratic reciprocity law given in [Hec70, Satz 165],
where it is assumed that at least one of the numbers α or β is a square modulo 4.
Indeed, if, say, α is a square modulo 4, then N(α) ≡ 1 mod 4 and εα = +1. Accord-
ingly, the right hand side of (7) reduces to the product, which is the formula [Hec70,
Satz 165].

Our proof of the main theorem and, in particular, for the quadratic reciprocity
law uses, apart from elementary algebraic manipulations, only the formulas (2)



4 HATICE BOYLAN AND NILS-PETER SKORUPPA

for the ordinary Gauss sums and ordinary quadratic reciprocity, which, however,
follows from (2). It is remarkable, that hence, as a consequence, the quadratic
reciprocity law for quadratic number fields is not a genuine new reciprocity law.
This is in contrast to what is suggested by Hecke’s proof which makes extensive use
of theta series associated to number fields.

A formula similar to the one in the theorem, but for general Gauss sums as-
sociated to arbitrary rational binary quadratic forms was proved in [SZ89, §4,
Theorem 3]. It is possible (though not completely obvious) to deduce our main
theorem from the formula in [SZ89]. However, this would give an essentially differ-
ent proof of our formula (4) since the authors make intensive use of the theory of
theta functions for deducing their formula.

We finally remark that we also verified the formulas (4) and (5) experimentally
for several thousands of numbers ω, α and β using [S+09].

Acknowledgment. The first author would like to express her gratitude to Franz
Lemmermeyer for introducing her to the subject and for many helpful discussions.

2. Proof of the Theorem and its Consequences

As in the theorem, K denotes a quadratic number field, say K = Q(
√
D), where

D is the discriminant of K. As in Section 1, for β ∈ K, we use β′ for its conjugate,
so that Tr(β) = β+β′ and N(β) = ββ′. Recall that O = Z+Zγ, where γ =

√
D/2,

for D ≡ 0 mod 4 and γ = 1 +
√
D/2 for D ≡ 1 mod 4.

Also as in the theorem we fix for the following an element ω 6= 0 in K. We
use a for its denominator, i.e. for the integral ideal such that ωO = ba−1 with
an integral ideal b which is relatively prime to a, and we use M for the smallest
positive rational integer such that Mω is integral.

The proof of the theorem is based on the following Lemmas 1, 2, 3 and 4, the
middle two of which cover the special case of the theorem that the denominator
of ω is odd respectively contains only even prime ideal powers. The general case
can then be reduced to these cases using the easily proved multiplicativity of the
Hecke Gauss sums as recalled in Lemma 4. For the proof of the Lemmas 2 and 3 we
determine in Lemma 1 invariants of the quadratic form Tr(µ2Mω/

√
D) and reduce

the calculation of the Hecke Gauss sums in question by elementary manipulations
to the formulas (2).

Lemma 1. The function Q(µ) = Tr(µ2Mω/
√
D) is an integral quadratic form

on O with discriminant 4N(Mω). Its content is relatively prime to M unless D, M
and Q(1) are simultaneously even. In the latter case, the greatest common divisor
of M and the content of Q is 2.

Proof. Set β := Mω. It is clear that Q(µ) = Tr(µ2β/
√
D) is an integral quadratic

form on O. If we write µ = x+ yγ, then Q(µ) = ax2 + bxy + cy2, where (a, b, c) =(
Tr(β/

√
D),Tr(2βγ/

√
D),Tr(βγ2/

√
D)
)
. Let ∆ = b2−4ac denote the discriminant

of the form. Note that

(8) T :=
(

a b/2
b/2 c

)
=
(

1 1
γ γ′

) ( β/√D 0

0 (β/
√
D)′

)(
1 γ
1 γ′

)
.

Hence ∆ = −4 det(T ) = 4N(β). Let cont(Q) denote the content of the form Q,
i.e. the greatest common divisor of a, b and c) and g := gcd(M, cont(Q). If we write
β = u+ vγ, we obtain

(9) (a, b, c) =

{(
v, 2u, vD4

)
if D ≡ 0 mod 4(

v, 2(u+ v), u+ v(D+3)
4

)
if D ≡ 1 mod 4.
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Suppose p is an odd prime divisor of g. Then p|β, since, by equation (9), p|u and
p|v. But then we have ω = β/p

M/p and a|Mp . But this contradicts the minimality
of M . So g is a power of 2.

Suppose that one of D, v or M is odd. If 2 divided g, then M would be even
and, again by equation (9), v would be even too, hence D would be odd, and thus u
even and 2 would divide β. As before we conclude that a would divide M/2, which
contradicts the minimality of M .

Lastly, we suppose that D, M and v = Tr(β/
√
D) are even. So 2 divides g. If

u were even, then β would also be even, since v is even. As before, ω would then
be the quotient of the integers β/2 and M/2, and this would imply a|M2 , which
contradicts the minimality of M . So u must be odd. But this implies g = 2. �

Lemma 2. The identity (4) holds true if M is odd, i.e. one has

G(ω)/
√

N(a) =
(

∆1
A

) ( ∆/∆1
M/(M,∆)

) √
sgn(∆1).

Here A is as in the theorem, moreover ∆ = 4N(Mω), and ∆1 is the unique integer
such that ∆1 ≡ 1 mod 4 and |∆1| = gcd(M,∆).

Proof. On summing over a set of representatives µ for O/MO instead of O/a and
setting µ = x+ yγ, we can write

G(ω)M2/N(a) =
∑

x,y mod M

eM (ax2 + bxy + cy2),

where we use eM (∗) = e2πi(∗)/M . Since M is odd the quadratic form f = ax2 +
bxy + cy2 is equivalent to a form Ax2 + By2 modulo GL(2,Z/MZ). Usually this
appears in the literature for the case of M being an odd prime power. However,
by applying the Chinese remainder theorem, this is true for arbitrary odd M . Here
AB is congruent to −∆l2 modulo M for an integer l coprime to M . Since by
Lemma 1 the form f is primitive modulo M , we can assume that M and A are
coprime. (In fact, this can obviously be assumed if M is a prime power. Again,
by the Chinese remainder theorem we can assume it in general). Note that then
gcd(M,B) = gcd(M,∆) = |∆1|. We therefore obtain

G(ω)M2/N(a) = |∆1|
∑

x mod M

eM (Ax2)
∑

x mod M ′

e′M (B′y2),

where we set M ′ = M/|∆1| and B′ = B/|∆1|. Inserting here the identity (2) we
obtain

G(ω)/v =
(
A
M

)√(−4
M

) (
B′

M ′

)√(−4
M ′

)
,

where v = N(a)|∆1|
√
MM ′/M2. Note that v =

√
N(a). For verifying this it is

enough to show M2 = N(a) gcd(M,∆). Indeed, we have

N(a) gcd(M,∆) = gcd
(
N(a)M,N(a)∆

)
= gcd

(
N(a)M,N(a)N(Mω)

)
= gcd

(
N(a)M,M2N(b)

)
= M gcd

(
N(a),M

)
= M2,

where for the last equation we used that MZ = a ∩ Z contains N(a). Writing(
A
M

)
=
(

∆1
A

) (
A
M ′

)
and

(−4
M

)
=
(−4
M ′

) ( −4
|∆1|

)
the right hand side of the last equation

for G(ω) becomes (
∆1
A

) (
AB′

M ′

)√(−4
M ′

) ( −4
|∆1|

)√(−4
M ′

)
.

Since
(
AB′

M ′

)
=
(
−∆/|∆1|
M ′

)
the lemma becomes now obvious. �

Lemma 3. The identity (4) holds true if M is a power of 2. In this case the
possible values of G(ω) are given by the following table:
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Assumptions G(ω)/
√

N(a gcd(a, 2))

D or a odd

∆2|M
(

∆2
A

) ( ∆/∆2
M/|∆2|

)√
sgn(∆2)

4|M and 4M |∆
(
A

2M

)
e2πiA/8

M = 2 or 2M ||∆ 0

D and a even
(

∆/4
2M

)
Here A is as in the theorem, a = Tr(Mω/

√
D), and we use ∆ = 4N(Mω). Finally,

∆2 is the integer such that |∆2| is the exact 2-power dividing ∆ and ∆/∆2 ≡
1 mod 4.

Remark. Note that ∆/4 = N(Mω) is odd if D and a are even. Indeed, if D is even
(so that a is a power of the single prime ideal above 2), then by the very definition
of M the norm N(Mω) is either odd or exactly divisible by 2, and as discriminant
of the integral form Tr(Mωµ2/2

√
D) (see Lemma 1) it is a square modulo 4.

Proof of Lemma 3. To compute G(ω) we proceed as in Lemma 2, i.e. we sum over
a set of representatives µ for O/MO instead of O/a and set µ = x + yγ. We thus
have

(10) G(ω) ≈
∑

x,y mod M

eM (ax2 + bxy + cy2).

Here, a, b, c are the integers as in the proof of Lemma 1. As in the proof of the
preceding lemma we use eM (∗) = e

2πi(∗)
M . Moreover, for two complex numbers

w and z we write w ≈ z to indicate that w = rz for some positive real number
r. By [Cas78, §8, section 8.4, lemma 4.1] a binary integral quadratic form whose
content is odd is equivalent modulo GL(2,Z2) to a diagonal form, to xy or to
x2 + xy+ y2 accordingly as its discriminant is even, equals 1 modulo 8, or equals 5
modulo 8. Recall from Lemma 1 that the gcd of the contents of the form f(x, y) =
ax2 + bxy + cy2 and M is 1 if D or a is odd, and equals 2 otherwise. Recall also
that the discriminant of f equals 4N(β), where we use β = Mω. We therefore find

f ∼


Ax2 +By2 if D or a is odd
2xy if D and a are even, and N(β) ≡ 1 mod 8
2(x2 + xy + y2) if D and a are even, and N(β) ≡ 5 mod 8,

where ∼ indicates to be equivalent modulo GL(2,Z/2tZ) for a sufficiently big t (in
fact, 2t = 4M suffices for the following computations). Here we used that, for even
D and a, the form f/2 is integral (see Lemma 1) and that N(β) is odd (see the
remark following the lemma). We now calculate G(ω) following the above three
cases.
Case 1: f ∼ Ax2 +By2. We can assume that A is odd (since f is primitive modulo
2 in this case). Let δ = gcd(M,B) and set B′ = B/δ and M ′ = M/δ. We can then
write

G(ω) ≈
∑

x mod M

eM (Ax2)
∑

y mod M ′

eM ′(B′y2).

Using equation (2) we find, for M,M ′ ≥ 4 the identity

G(ω) ≈
(
A

2M

) (
B′

2M ′

)
e8

(
A+B′

)
=
(
A
δ

) (∆/4δ
2M ′

)
e8

(
A(1−∆/4δ)

)
.

Here, for the second identity we write M = δM ′ in the left hand side and use that
AB′ ≡ −l2∆/4δ mod 2M ′ for an odd l. We note that M ′ ≥ 4 implies 4δ|M and
hence |∆2| = gcd(M,−4AB) = 4δ. In particular, we see ∆2|M . Vice versa, ∆2|M
implies that M,M ′ ≥ 4. We thus have to verify that the right hand side of our last
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formula equals the formula given in the first row of the table. Indeed, this follows
from |∆2| = 4δ distinguishing the cases ∆2 > 0 (and hence ∆/4δ ≡ 1 mod 4) and
∆2 < 0 (and hence ∆/4δ ≡ 3 mod 4) and using that, for any integer a, the symbol(
a
2

)
e8(a) depends only on a modulo 4.

If M ≥ 4 but M ′ = 1, then

G(ω) ≈
(
A

2M

)
e8(A).

Finally, if M or M ′ equals 2 then G(ω) = 0. Note that M ′ = 1 and M ′ = 2 are
equivalent to 4M |∆ and 2M ||∆, respectively, as stated in the table.
Case 2: f ∼ 2xy. Here ∆/4 ≡ 1 mod 8 and we have

G(ω) ≈
∑

x,y mod M/2

eM/2(xy) ≈ 1,

as claimed.
Case 3: f ∼ 2(x2 + xy + y2). In this case we have ∆/4 ≡ −3 mod 8, and we find

G(ω) ≈
∑

x,y mod M/2

eM/2(x2 + xy + y2) ≈
( −3

2M

)
.

For proving the second identity write (x, y) = r + u, where r runs through a set
of representatives for Z2/NZ2, and where u runs through a set of representatives
for NZ2/M/2Z2. Here N is the smallest positive integer whose square is divisible
by M/2. By some obvious calculations the sum in the above formula for G(ω) is
then reduced to the same sum but with M/2 replaced by 2 or 4, which can be
immediately computed.

It remains to prove that |G(ω)|2 equals N
(
a gcd(2, a)

)
(unless it is 0). This can

either be easily proved directly by writing |G(ω)|2 = G(ω)G(−ω) and doing some
obvious transformations in the double sum (or by going again through the above
calculations and using equalities instead of ≈). For the details of the direct proof
see [BS09, Lemma]. This proves the lemma. �

For deducing the general formula (4) from the preceding two Lemmas we use

Lemma 4. Write the denominator a of ω as a = a1 a2 with relatively prime integral
ideals a1 and a2. Choose elements αi in ai such that the ideals αi/ai are relatively
prime to a. Then one has

G(ω) = G(ωα2
1)G(ωα2

2)

(Note that ωα2
1 and ωα2

2 have denominators a2 and a1, respectively).

Remark. Note that numbers αi as in the lemma always exist. In fact, we can
e.g. choose any prime ideal pi amongst the infinitely many prime ideals in the ideal
class of a−1

i which does not divide a and set αi = aipi.

Proof of Lemma 4. This follows from [Hec70, eq. (169)]. �

Proof of the Theorem. Let us denote the expression on the right hand side of equa-
tion (4) as F (ω), and set

B(ω) = G(ω)/
√

N
(
a gcd(2, a)

)
.

By Lemma 2 and Lemma 3 we know that B(ω) = F (ω) if the denominator of ω is
either odd or else a product of even prime ideals. It follows from Lemma 4 that

B(ω) = B(ωα2
1)B(ωα2

2)
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whenever we decompose the denominator a of ω as a = a1a2 with relatively prime
ideals ai, and choose numbers αi in ai such that the αia−1

i are prime to a. If we
can prove that

(11) F (ω) = F (ωα2
1)F (ωα2

2),

holds true for any such decomposition of a with an odd a1 and an a2 which is a
product of even prime ideals, it is clear that the claimed formula (4) follows then
for arbitrary a.

To prove equation (11) (for odd a1 and a product of even prime ideals a2) we use
M , N , β, ∆1 and A as defined in the theorem. We use Me, Ne, βe, ∆e and Ae for
the corresponding quantities associated to ωe := ωα2

e, where αe = α1 (so that the
denominator of ωe contains only even primes). Similarly we use Mo, No (= Mo)
etc. for the corresponding quantities associated to ωo := ωα2

o, where αo = α2. If
there are two integers ∆1 and ∆e satisfying these conditions, respectively, we choose
the positive ones. We also set F = F (ω) and Fi = F (ωα2

i ) (i = e, o). Finally, we
can also assume that the ideals αe/a1 and αo/a2 are relatively prime to N(a)N(b)
and relatively prime to the norm of each other. In particular, αe is then relatively
prime to 2, and the norms of αe/a1 and αo/a2 are relatively prime to N(a) and
N(b).

These quantities are correlated as follows:

M = MeMo, N = NeMo,(12)

N(βe)N(β) =
(
NeNN(b)N(αe/a1)/N(a2)

)2
,(13)

N(βo)N(β) =
(
NoNN(b)N(αo/a2)/N(a1)

)2
,(14)

∆1 = ±∆e∆o,(15)

4N(β)/∆1 = t · 4N(βe)/∆e with an odd t.(16)

Moreover, note that
(i) Me is a power of 2 and Mo is odd.

(ii) If D is even, then a := Tr(Mω/
√
D) and ae := Tr(βe/

√
D) have the same

parity.
The statement (i) and the first identity in equation (12) are obvious. For (ii),
assume D is even. If a is even, then by Lemma 1, the quadratic form Q(µ) =
Tr(Mωµ2/

√
D) is even, hence Q(αe) and then also ae = Q(αe)/Mo is even. Vice

versa, if ae is even, then Qe(µ) := Tr(Meωα
2
eµ

2/
√
D) is even. Since we have

chosen αe relatively prime to 2 we find a µ0 such that αeµ0 ≡ 1 mod 2, and then
MoQe(µ0) ≡ a mod 2, hence a is even. The second identity of (12) follows from (ii).
equations (13), (14) follow by straightforward calculation. For proving (15), we find
by a simple calculation

∆e∆o = ± gcd
(
Me, 4N(βe)

)
gcd

(
Mo, 4N(βo)

)
= gcd

(
M, 4N(β)N(αo)2/Me, 4N(β)N(αe)2/Mo, 16N(β)N(ωα2

eα
2
o)
)
.

Since we have chosen αe and αo such that N(αo) and N(αe) are relatively prime, the
gcd of the last three entries equals 4N(β), and we recognize the claimed identity.
Finally, from (15) we deduce that (16) holds true with t = M2

o /N(α2
e)∆o, which is

odd (note that αe has been chosen relatively prime to 2).
We assume first of all that D or ae are odd. Then Ne = Me, and, using (12), we

also have N = M . Note that always No = Mo.
Case 1: The 2-part of 4N(βe) divides Me. In this case, by Lemmas 2 and 3, we have

FeFo =
(

∆e

Ae

)(
4N(βe)/∆e

Me/|∆e|

)√
sgn(∆e)

(
∆o

Ao

)(
4N(βo)/∆o

Mo/|∆o|

)√
sgn(∆o).
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Since MoAe = Q(αe) is relatively prime to ∆e we have
(

∆e

MoAe

)
=
(

∆e

A

)
. By a

similar argument we find
(

∆o

MeAo

)
=
(

∆o

A

)
. We shall show in a moment

(17) ∆1 = ∆e∆o.

This implies in particular
√

sgn(∆e)
√

sgn(∆o) = (∆e,∆o)∞
√

sgn(∆1), where we
use (∆e,∆o)∞ for the Hilbert symbol at infinity, i.e. it equals −1 if ∆e, ∆o are
both negative, and equals +1 otherwise. Using these identities we find

FeFo = UV
(

∆1
A

) ( 4N(β)/∆1
M/|∆1|

)√
sgn(∆1),

where

U =
(

∆e

M0

)(
∆o

Me

)
(∆e,∆o)∞

V =
(

4N(β)/∆1·4N(βe)/∆e

Me/|∆e|

)(
4N(β)/∆1·4N(βo)/∆o

Mo/|∆o|

)
.

Using (13), (14), we can write

V =
(

∆o

Me/|∆e|

)(
∆e

Mo/|∆o|

)
.

We thus find
UV =

(
∆e

|∆o|

)(
∆o

|∆e|

)
(∆e,∆o)∞.

From this identity it is easily checked that UV = 1. From (16), we recognize that
4N(β)/∆1 is odd, so that sum defining F contains only one term, and that the last
formula for FeFo equals F .

It remains to show (17). From (15) we have ∆ = s∆e∆o. Since N(βe)/∆e and
N(β)/∆1 are both equal to 1 modulo 4, we have s∆o ≡ N(βe)N(β)/∆2

e mod 4. Since
the right hand side is a perfect square by (13) we deduce that s∆o is 1 modulo 4.
Since ∆o is already 1 modulo 4 we conclude s = 1.
Case 2: 4|Me and Me|N(βe). Here ∆e = Me. Moreover, by (15) and (16) 4|M and
4N(β)/∆. The sum defining F contains hence two terms and ∆1 is positive.

Again by Lemmas 2 and 3, we have

FeFo =
(
Ae

2Me

)
e2πiAe/8

(
∆o

Ao

)(
4N(βo)/∆o

Mo/|∆o|

)√
sgn(∆o).

As in Case 1 we have
(
MoAe
2Me

)
=
(

A
2Me

)
and

(
∆o

MeAo

)
=
(

∆o

A

)
. Writing ∆e∆0 =

s∆1, where s is the sign of ∆o, we find by a straightforward calculation (using (14))

FeFo =
(

∆1
A

) ( 4N(β)/∆1
M/∆1

)
W,

where
W =

(
4s

AM/∆1

)√
s ·
(
Ae
2

)
e2πiAe/8.

If A = Q(µ), then choose a ν such that αeν ≡ µ mod 4, so that A ≡MoQe(ν) mod
4. Since Qe(ν) is odd, we can assume that it equals Ae. Hence A ≡ AeMo mod 4.
Since ∆o is 1 modulo 4 we can write sM/∆1 = Mo/∆o ≡ Mo mod 4. A fortiori
Ae ≡ sAM/∆1 mod 4. The last two factors of W depend only on Ae modulo 4 and
become therefore

(
sAM/∆1

2

)
e2πisAM/8∆1 . From this it becomes in turn obvious

that W =
(
AM/∆1

2

)
e2πiAM/8∆1 . Inserting this in the last identity for FeFo, we

obtain
FeFo =

(
∆1
A

) ( 4N(β)/∆1
M/∆1

)(
AM/∆1

2

)
e2πi

AM/∆1
8 ,

and using
(
a
2

)
e2πia/8 =

(
1 +

(−4
a

)
i
)
/
√

2 for a = AM/∆1, we recognize that the
right hand side of this identity for FeFo equals F as given in the theorem.
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Case 3: Me = 2 or Me||2N(βe). Here, by Lemma 3, we have Fe = 0. We have to
show F = 0. If Me = 2, then by (i) and (12) also 2||M and hence the sum defining
F contains indeed no terms. If Me||2N(βe), then Me||2N(β) (by (16)). But this
implies that 4N(β)/∆ is exactly divisible by 2, and hence again the sum defining
F contains no terms.

We finally assume that D and ae are even, so that by (ii) also a is even. Here
N = M/2 and Ne = Me/2. Also, by the remark following Lemma 3, 4N(β) and
4N(βe) are odd. The latter implies ∆e = 1, and, by (15), then ∆1 = ∆o (note that
we have equality here since both sides are congruent 1 modulo 4). By Lemmas 2,
3, we have

FeFo =
(

4N(βe)
2Me

)(
∆o

Ao

)(
4N(βo)/∆o

Mo/|∆o|

)√
sgn(∆o)

Since NeAo = Q(αo)/2 is represented by the form Q(µ)/2 and relatively prime to
∆o, we have

(
∆o

NeAo

)
=
(

∆o

A

)
. Hence, writing ∆1 for ∆0, we obtain

FeFo =
(

∆1
A

) ( 4N(βe)∆1
Ne

)(
4N(βo)/∆1
Mo/|∆1|

)√
sgn(∆1)

For verifying that this equals F we need to show that the two Legendre symbols in
the middle equal

(
4N(β)/∆1
N/|∆1|

)
, i.e. that(

4N(βe)∆1·4N(β)/∆1
Ne

)(
4N(βo)/∆1·4N(β)/∆1

Mo/|∆1|

)
= 1.

But this follows immediately from equations (13) and (14). This concludes the
proof of the theorem. �

We finally prove the supplement and the corollary of the theorem. For this we
need the following lemma.

Lemma 5. If the discriminant D of K is congruent to 4 modulo 8, then all
odd integers in K have norm congruent to +1 modulo 4. Otherwise, there ex-
ists integers α in K with N(α) ≡ −1 mod 4. For every such integer the quadratic
form Tr(αµ2/

√
D), viewed as quadratic form on the residue class ring O/(4), is

GL(2,Z/4Z)-equivalent to n(α)(x2 + y2) or n(α)x2 + 2(x+ y)y for a suitable n(α)
in {±1}. There is one and only one Dirichlet character χ modulo 4 on O such that
χ(α) = n(α) for all α with N(α) ≡ −1 mod 4.

Proof. If D ≡ 4 mod 8, then, for every integer α = u+ v
√
D
2 in K, we have N(α) =

u2 − D
4 v

2 ≡ u2 + v2 mod 4. If α is odd, then u and v have different parity, and
hence N(α) ≡ +1 mod 4.

Assume for the rest of the proof that D 6≡ 4 mod 8. The elements 1 +
√
D
2 (if

D ≡ 0 mod 8) and 2 +
√
D (if D ≡ 1 mod 4) have norm modulo 4 equal to −1.

Let α be an integer such that N(α) ≡ −1 mod 4, and write Tr
(
α(x+yγ)2/

√
D
)

=
ax2 + bxy + cy2 =: f . From b2 − 4ac = 4N(α) we deduce that b is even and hence
(b/2)2 − ac ≡ −1 mod 4. If b is divisible by 4, then ac ≡ 1 mod 4 and f ≡ a(x2 +
y2) mod 4. If b/2 is odd, then ac ≡ 2 mod 4, and hence f ≡ ax2 + 2(x+ y)y mod 4
(if a is odd) or f ≡ 2(x+ y)y + cy2 mod 4 (if c is odd).

We determine the structure of the group
(
O/(4)

)∗ of units in O/(4). Note that
its order is 8, 4 and 12 accordingly as D equals 0, 1 or 5 modulo 8. The map x 7→ γ
induces an isomorphism A[x]/(g) ' O/(4), where A = Z/4Z and (i) g = x2 + 2
(if D ≡ 0 mod 8), (ii) g = x2 − x (if D ≡ 1 mod 16), (iii) g = x2 − x + 2 (if
D ≡ 9 mod 16), (iv) g = x2 − x − 1 (if D ≡ 5 mod 16), and (v) g = x2 − x + 1 (if
D ≡ 13 mod 9). The map x 7→ x+ 2 defines isomorphisms between the rings with
g as in (ii) and (iii) and with g as in (iv) and (v), respectively. One verifies that(
A[x]/(g)

)∗ = 〈−1〉 × 〈z〉, where z = 1 + x for g = x2 + 2 and g = x2 − x− 1, and
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where z = 1 + 2x for g = x2 − x. Indeed, if for example g = x2 − x − 1, then the
order of the group of units equals 12, and we have to verify that z has order 6 and
z3 6= −1. But (1 + x)2 = 2 + 3x and (1 + x)3 = 2x + 3. The other cases can be
treated similarly.

Thus we find in any case that
(
O/(4)

)∗ = 〈[−1]〉 × 〈[δ]〉 for a suitable δ. Here
[α], for any integer α, denotes the residue class of α. Since O contains elements
with norm equal to −1 modulo 4 we know that δ is such an element. By replacing
δ by −δ if necessary, we may assume that n(δ) = +1. Let χ be the character on(
O/(4)

)∗ which maps [−1] to −1 and [δ] to +1. If α is an odd integer, we can find
rational integers s and t ≥ 0 such that α ≡ (−1)sδt mod 4. Then Tr

(
αµ2/

√
D
)
≡

(−1)sTr(δtµ2/
√
D) mod 4. If N(α) ≡ −1 mod 4, then t is odd, say, t = 1 + 2k,

and hence (−1)sTr(δtµ2/
√
D) = (−1)sTr(δ(δkµ)2/

√
D) is equivalent modulo 4 to

(−1)sTr(δµ2/
√
D), and hence n(α) = (−1)s = χ(α).

Since χ(±δ) = n(±δ) and χ(−1) = χ(δ)χ(−δ) the property χ(α) = n(α) char-
acterizes χ uniquely. This proves the lemma. �

Proof of the supplement to the theorem. It is not hard to prove that G(β/α) =(
β
α

)
G(1/α) [Hec70, Satz 155]. It suffices therefore to prove Formula (5) for β = 1.

For an odd α the equation (4) reads

(18) G(1/α)/
√
|N(α)| =

(
εN(M/α)

A

)(
4ε

M/|N(M/α)|

)√
εn,

where ε = εα and n = sign
(
N(α)

)
, where M is the smallest positive integer such

that M/α is integral, and where A denotes any number relatively prime to M

and represented by Q(µ) = Tr(Mµ2/α
√
D). In particular, Q(µ) is equivalent to

[A,B,C] for suitable B,C. Since B2 − 4AC = 4N(M/α) (cf. Lemma 1) we have(
4N(M/α)
|A|

)
= 1, and then

(
4N(M/α)

A

)
= σ, where σ = −1 if Q is negative definite

and where σ = +1 otherwise. Using the Hilbert symbol for the real numbers we
find σ =

(
A,N(α)

)
∞. If ε = +1 we now recognize the claimed formula.

If ε = −1 then the content of Q is odd (otherwise the discriminant N(M/α) of
Q/2 would be congruent to 1 modulo 4). We can therefore assume that A is odd,
and then the first factor of the right hand side of (18) becomes

(−4
A

)
σ, and the

right hand side can be written in the form(−4
A

) ( −4
M/|N(M/α)|

)
σ
√
−n =

(
−4

AN(α)/M

)
σn
√
−n.

If A = Tr(Mµ2
0/α
√
D), then

(
−4

AN(α)/M

)
= −

(−4
a

)
, where a = Tr(αµ′0

2
/
√
D). We

now recognize the claimed formula provided
(−4
a

)
= χ−(α). But from Lemma 5

we know that D 6≡ 4 mod 8 and, in the notations of the lemma, that n(α) =
(−4
a

)
,

which equals χ−(α). This proves the supplement. �

Proof of the corollary to the theorem. Inserting (5) into (6) we find(
α
β

)(
β
α

)
=

χεαβ (αβ)
χεα(α)χεβ (β)

(
Aαβ ,N(αβ)

)
∞(

Aα,N(α)
)
∞

(
Aβ ,N(β)

)
∞

×
(
εαβ ,−N(αβ)

)
∞(

εα,−N(α)
)
∞

(
εβ ,−N(β)

)
∞

√
εαβN(αβ)√

εαN(α)
√
εβN(β)

,

(19)

where Aα, Aβ etc. denotes any nonzero number represented by Tr
(
αµ2/

√
D
)

etc..
Since εαβ = εαεβ , and hence χεαβ = χεαχεβ , the first factor on the right of (19)
reduces to χεα(β)χεβ (α).

Since the Hilbert symbol is bilinear the third factor on the right hand side of (19)
can be reduced to

(
εα,N(α)

)
∞

(
εβ ,N(β)

)
∞ (where one uses εαβ = εαεβ). For
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two nonzero real numbers a and b one has
√
ab/
√
a
√
b = (a, b)∞. From this

we see that the fourth factor in (19) combined with the third factor becomes(
εα, εβ

)
∞

(
N(α),N(β)

)
∞. This proves already the claimed formula (7) if K is a

complex quadratic field since then the norms of elements in K are positive. Sup-
pose from now on that K is real. Since the Hilbert symbol is bilinear we can
write (

N(α),N(β)
)
∞ = (α, β′)∞(α′, β)∞

∏
σ

(
σ(α), σ(β)

)
∞.

For proving the claimed reciprocity formula (7), it remains to verify the identity(
Aαβ ,N(αβ)

)
∞(

Aα,N(α)
)
∞

(
Aβ ,N(β)

)
∞

= (α, β′)∞(α′, β)∞.

The symbol
(
Aα,N(α)

)
∞ equals −1 if and only if αα′ < 0 and Tr

(
α/
√
D
)

=
(α−α′)/

√
D < 0. Thus,

(
Aα,N(α)

)
∞ = −1 if and only if α < 0 < α′, i.e. we have(

Aα,N(α)
)
∞ =

(
α,−α′

)
∞. Applying this formula also to the other two Hilbert

symbols on the left of the last identity, it becomes(
αβ,−α′β′

)
∞(

α,−α′
)
∞

(
β,−β′

)
∞

= (α, β′)∞(α′, β)∞.

But this identity holds obviously true since the Hilbert symbol is bilinear. This
proves the corollary. �
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